专业从事微波、移动、卫星通信天线及
相关通信产品研发、生产、销售的高新技术企业
推荐产品
联系我们
电话0755-89985492
传真0755-89916753
手机13691892855
微信深圳市龙岗区爱联嶂背创业四路汉光科技园4栋5楼
答: 如图所示天线就是把设备传输的电信号转换为电磁波传送。天线都具备收发功能,实地使用可能存在某个天线只做接收用(例如广播天线)。
说明:如果电磁波能够看见的话那么就是这个样子的(美国摄影师的作品)
说明:天线把电场转换为磁场从而形成电磁波把信号传送,反向则把磁场转换为电场然后通过线路传送给设备,从而形成无线信号的发射与接收。
说明:移动通信频段集中在 UHF 频段,每个天线支持的频率范围就代表天线的通用能力,节约运营商的天线投资。目前运营商都希望采用宽频天线。
说明:基站(宏站)用的全向天线为下图棒状,选型根据场景需求确定,关键参数之一增益。(详见天线电气性能)
2)定向:信号辐射方向有一定的方向限制,集中在某个方向区域。
说明:定向天线可以把信号能量集中在某个方向,从而保障某个方向的信号强度增强;一般市区或环境复杂区域一般都是用定向天线。
说明:美国摄影师对基站的无线覆盖的视觉化体现,定向覆盖一目了然。(楼顶基站天线信号辐射视觉化)
说明:泄露电缆的信号方向性强,且更均匀,长用于隧道及电梯覆盖。
说明:对称振子天线是有三部分构成,振子是天线信号的辐射体,馈电网络是把设备信号传送给振子的线路。外罩及附件体现天线的机械性能。
说明:振子有很多种形状,不同形状的制作工艺和材料以及对辐射效 率的作用都不相同。所以不同厂家生产的天线的电气性能有较大差异。
说明:上图为板状天线内部结构,天线的增益与振子的数量相关,增益越大则天线振子数量越多(天线越重且越长),这就是为什么高增益天线一般都较重较长。(详见电气性能解释:增益)
说明:天线的外罩与天线的防护性能相关,影响天线的使用寿命及性 能。优选玻璃钢材质,PVC材料易损坏和老化。
说明:室外看到的基站天线一般都为板状定向天线,仅能看到外罩和接头。内部结构是看不到的,性能在天线背部的标签上体现。至于天线性能优劣只有经过仪表检测或者长期使用的劣化程度表现。
说明:机械性能指标在选型中要根据使用场景的自然环境和安装环境选择适合的天线。
说明:电气性能是体现天线对于无线信号的影响的关键性能,是网规 工程师天线选型和网优工程师定位网络问题时天线引起的网络问题的基本要素。网优工程师必须掌握!!!
说明:增益,增:增加,益:好处,收益;一般增益在电子科学中都代表放大多少,但由于天线是无源器件也即无能量的转换,即不可能对信号进行放大。所以此处增益代表的是对信号的能量集中的程度与转换的效率。
说明:天线对于信号的能量集中是通过振子的数量增加而实现的,振子数量越多则对能量的集中程度越高,增益越大。所以高增益天线一般都是长且重。
说明:振子数量的增加则实现能量在某一方向上的聚集,从而实现这一范围的信号能量密度增加而信号增强。
说明:天线的增益 Gain 的单位为 dBi 或者 dBd(参照物不同而已)。
说明:从二维两个角度,水平面与垂直面,垂直面能量被集中在某个 空间高度内,水平面宽度的缩小。 综述:天线的增益是天线选型中的重要性能指标,选择合适增益天线 即能保障信号的强度及天线的安装条件。
说明:波束宽度一般指的是主瓣的能量宽度(水平半功率角与垂直半功率角)。
说明:通过波束宽度限定信号能量在水平方向与垂直方向的覆盖范 围,保障范围内的信号强度。一般可通过增加反射板来进一步达到波束宽度的限制。
说明:如图示 水平方向与垂直方向的能量控制。一般水平方向称为水平半功率角(60度、65度、90度、105度、120度常见),垂直称为垂直半功率角(6度、7度、8度、13度等常见)。
说明:通过增加反射板,促进水平波束变窄从而能够促进能量的集中保障信号的强度(适合带状覆盖例如铁路或公路覆盖)。
说明:前后比即天线后向((180 °± 30 °的范围内)后向波束电平与前向最大波束的电平(信号强度之差),表明信号能量的分配问题。一般期望前向能量大,后向能量小。
说明:功率容限即无源器件接入的信号最大输入功率,当超过这个要求时则可能损坏无源器件,例如天线属于无源器件。另会产生飞弧现象(微放电,打火现象)从而导致信号干扰问题出现。
说明:现场接入天线的信号输入总功率不能超过该天线的功率容限, 所以现场一个天线接入多路信号时要注意天线的功率容限是否允许范围内。
说明:现场现在由于天馈安装平面的资源匮乏,都在对天线进行共享利用,则再次过程一定要关注被共享利用的天线其功率容限是否允许。
说明:互调排查是优化保障的关键,如果产生互调信号则会干扰系统内或其它系统的信号,对通信质量造成影响。(移动一般会有专项优化项目进行排查,例如工兵行动).
说明:GSM网络主要进行GSM900的五阶互调影响和三阶互调影响。 LTE网络主要为GSM1800M的三阶互调影响与GSM900二次谐波影响。
说明:现场排查器件及线路的互调一般采用分段排查定位法,使用互调仪连接天馈系统进行互调排查(紫光互调仪,罗森博格互调仪为常用互调仪)。
说明:一般新入网天线都在安装前必须三阶互调性能检测,合格产品才允许使用。
说明:天线检测互调时应在开阔地方,架空连接互调仪检测。检测值要达到天线标签标注的性能指标值。
说明:线路中的器件也是参生互调信号的重灾区,所以一般的天线, 馈线,器件都需要进行互调检测。图上就是更换问题器件后可以看出干扰信号降低很多(波峰大幅减少)。
说明:极化为电磁波在空间中传播的方向,一般已电场的方向为基准。
说明:城市一般使用的天线基本为双极化天线,+-45度,提升基站侧接收性能实现极化增益。
说明:图示为无线传播在复杂环境中的传播方式,直射,反射,折射等多种传播方式都存在。
说明:一般 VSWR<1.5即可接受。超过1.5则会对基站的信号强度产生大的影响,需要维护人员携带仪表上站进行排查定位。
说明: 图上三叶草为基站示意图(三个方向的覆盖),天线的方位 角必须朝向用户聚集区域(设计院设计,优化根据现场调整)。
说明:哈光生产的地质罗盘是网优最常见的罗盘,可淘宝查找其使用 说明书。罗盘可测量方位角及倾角。
说明:大表盘是方位表盘(水平角度刻度盘),内层表盘是垂直刻度 表盘(测量倾角度数)。
说明:使用罗盘测量天线方位角是网优人员必须掌握的基本功,详见《罗盘使用指导书》。
说明:通过天线波束的下倾调整已起到控制基站覆盖半径的作用。下 倾角的调整也是网络优化控制信号覆盖的远近的最常用的手法,所以 继续掌握下倾角的调整和计算。以及机械下倾角和电子下倾角的差异。
说明:网规或网优人员给出调整度数,塔工(具备登高证且具备天线 安装调整经验的工人)上塔调整;(使用坡度仪调整机械下倾角)。
说明:电子下倾即不通过调整天线支臂仅改变天线内部的移相器从而实现波束的下倾(如下图示)。分为手动调整和远程电动调整。
说明:移相器通过调整馈电网络的长度改变振子的馈电相位,从而改变天线波束的下倾角度。
说明:上图为手动调整电子下倾角天线,图中的白色刻度杆即为调整杆,需人工手动拧(杆上有度数)。
说明:远程调整电下倾是目前的趋势,通过RCU的远程控制实现。从而降低调整的人工及其它成本费用,且效率提升。
说明:天线背部的照片即可看到天线是否支持电下倾及其它电气性能指标。(勘站过程中需记录该站址天线的标签,为后期的优化提供支撑数据).
另天线的波束下倾角度的计算,一般都采用工具实现,不需要记忆公 式计算;(下倾相关因素:天线高度、覆盖距离要求、波束垂直半功率 角)掌握几个常用工具的使用即可。
说明:一般现场工程师都会有Excel宏工具或其它工具计算下倾角。作为调整的理论参考数据。
说明:同一平面安装的天线不能互打,且水平间距距离足够(详细要求请查表).
说明:两天线垂直间隔距离不足(垂直隔离度要求)一般至少50cm以上要求。
综述,由于现在同一平台上安装天线数量过多,所以保障水平隔离与 垂直隔离是保障信号互相干扰控制的基础,干扰过强则导致信号质量 变差(网优人员的基本技能,上站即可看出是否安装合理)。
说明:如图示则此天线的辐射信号遭到严重阻挡,导致覆盖方向的用 户信号强度变差或盲区。
说明:信号在传播过程中能量最集中的空间范围称为菲涅尔区,尤其 是靠近发射端的空间范围称为第一菲涅尔区如果此区域被阻挡则信 号基本无法保障有效覆盖半径。
实验,取一手电筒打开,然后放一手指在前面,看手指距离远近不同造成的效果有何差异。基本越近阻挡越多。
说明:天线必须安装牢固,不能由于安装问题导致天线的方位角或下倾角出现大的变化。
说明:防雷不到位,天线遭雷击导致设备损坏等问题。天线必须在避雷针的保护范围内。
说明:防水质量不到位的话容易导致进水从而造成驻波比过大问题。
下一页:关于天线一些常见的问题